Introduction

With d’Alembert’s principle we leave the realm of statics and enter the realm of dynamics.”

Cornelius Lanczos [1]



Legendre Transformation

To discuss about Hamiltonian mechanics, one should first introduce Legendre transformation. The derivation in this section is heavily based on Lanczos [2]. Consider a convex function \(\mathbf{f}(\cdot):\mathbb{R}^{n}\rightarrow \mathbb{R}\) with \(n\) variables, \(\mathbf{f}(x_1, x_2, \cdots, x_n)\). We define a new set of variables, \(y_1, y_2, \cdots, y_n\) as follows: \[ y_1 \equiv \frac{\partial \mathbf{f}}{\partial x_1}, ~~ y_2 \equiv \frac{\partial \mathbf{f}}{\partial x_2}, ~~ \cdots, ~~ y_n \equiv \frac{\partial \mathbf{f}}{\partial x_n} \] We now define a new function \(\mathbf{g}(\cdot):\mathbb{R}^{n}\rightarrow \mathbb{R}\) with \(n\) variables, \(\mathbf{g}(y_1, y_2, \cdots, y_n)\): \[ \mathbf{g}(y_1, y_2, \cdots, y_n) = \sum_{i=1}^{n} x_iy_i - \mathbf{f}(x_1, x_2, \cdots, x_n) \tag{1} \] Note that \(x_1, x_2, \cdots, x_n\) are expressed with respect to \(y_1, y_2, \cdots, y_n\), which is possible due to the convexity of \(\mathbf{f}(\cdot)\).

Since \(\mathbf{g}(\cdot)\) is a function of \(y_1, y_2, \cdots, y_n\), a small deviation of \(\mathbf{g}\) results in (Eq. 1): \[ \delta \mathbf{g} = \sum_{i=1}^{n}y_i \delta x_i + \sum_{i=1}^{n}x_i \delta y_i - \sum_{i=1}^{n}\frac{\partial \mathbf{f}}{\partial x_i}\delta x_i = \sum_{i=1}^{n}x_i \delta y_i + \underbrace{\sum_{i=1}^{n}\Big( y_i - \frac{\partial \mathbf{f}}{\partial x_i} \Big)}_{=0}\delta x_i = \sum_{i=1}^{n}x_i \delta y_i \] From this result, we show that: \[ x_1 \equiv \frac{\partial \mathbf{g}}{\partial y_1}, ~~ x_2 \equiv \frac{\partial \mathbf{g}}{\partial y_2}, \cdots, ~~ x_n \equiv \frac{\partial \mathbf{g}}{\partial y_n} \] Summarizing, there is a strong symmetry between the two functions:

The physical meaning of this transformation is discussed by Prof. Balakrishnan, where he mentioned that Legendre transformation is describing a function with it’s velocity, not position.



Hamiltonian

From the Legendre transformation, we now define the Hamiltonian \(\mathcal{H}(\mathbf{q},\mathbf{p},t)\) of the system, which is the Legendre transformation of the Lagrangian \(\mathcal{L}(\mathbf{q},\mathbf{\dot{q}},t)\). The dual variable of \(\mathbf{\dot{q}}=(\dot{q}_1,\dot{q}_2,\cdots,\dot{q}_n)\) is defined by the momentum \(\mathbf{p}=(p_1, p_2, \cdots, p_n)\), where: \[ \mathbf{p} \equiv \frac{\partial \mathcal{L}(\mathbf{q},\mathbf{\dot{q}},t)}{\partial \mathbf{q}}, ~~~~~ \mathcal{H}(\mathbf{q},\mathbf{p},t) = \sum_{i=1}^{n}p_i\dot{q}_i - \mathcal{L}(\mathbf{q},\mathbf{\dot{q}},t) \] We can further derive that for \(i=1,2,\cdots, n\). \[ \frac{\partial L(\mathbf{q},\mathbf{\dot{q}},t)}{\partial q_i} = -\frac{\partial H(\mathbf{q},\mathbf{p},t)}{\partial q_i} ~~~~~~~~~ \frac{\partial L(\mathbf{q},\mathbf{\dot{q}},t)}{\partial t} = -\frac{\partial H(\mathbf{q},\mathbf{p},t)}{\partial t} \] Considering the Euler-Lagrange equation: \[ \frac{d}{dt}\Big( \frac{\partial L(\mathbf{q},\mathbf{\dot{q}},t)}{\partial \dot{q}_i} \Big) - \frac{\partial L(\mathbf{q},\mathbf{\dot{q}},t)}{\partial q_i} = Q_i ~~~ i=1,2,\cdots, n \] It is quick to check that we have \(2n+1\) equations: \[ \begin{align} q_i &= \phantom{-} \frac{\partial H(\mathbf{q},\mathbf{p},t)}{\partial p_i} \\ p_i &= -\frac{\partial H(\mathbf{q},\mathbf{p},t)}{\partial q_i} +Q_i\\ \end{align} \]

References

[1]
C. Lanczos, The variational principles of mechanics. Courier Corporation, 2012, p. 88.
[2]
C. Lanczos, The variational principles of mechanics. Courier Corporation, 2012, pp. 161–168.