Introduction

With d’Alembert’s principle we leave the realm of statics and enter the realm of dynamics.”

Cornelius Lanczos [1]

We extend the principle of virtual work, which is for statics, to In that sense, one might say that principle of virtual work is just a special case of d’Alembert’s principle for static systems.



Euler-Lagrange Equations from d’Alembert’s Principle

Consider a system with \(N\) mass particles. \[ 0 = \sum_{i=1}^{N} ( \mathbf{F}_i - \dot{\mathbf{p}}_i ) \cdot \delta \mathbf{r}_i \;\;\;\;\;\;\; \sum_{i=1}^{N} \mathbf{F}_i \cdot \delta \mathbf{r}_i = \sum_{j=1}^{n} \bigg( \Xi_j - \frac{\partial V}{\partial q_j} \bigg) \delta q_j \]

The term that was omitted in class was: \[ \begin{align*} \sum_{i=1}^{N} \dot{\mathbf{p}}_i \cdot \delta \mathbf{r}_i &= \sum_{i=1}^{N} m_i \ddot{\mathbf{r}}_i \cdot \delta \mathbf{r}_i = \sum_{i=1}^{N} m_i \ddot{\mathbf{r}}_i \cdot \bigg( \sum_{j=1}^{n}\frac{\partial \mathbf{r}_i}{\partial q_j } \bigg)\delta q_j = \sum_{j=1}^{n} \bigg( \sum_{i=1}^{N} m_i \ddot{\mathbf{r}}_i \cdot \frac{\partial \mathbf{r}_i}{\partial q_j}\bigg) \delta q_j \\ \sum_{i=1}^{N} m_i \ddot{\mathbf{r}}_i \cdot \frac{\partial \mathbf{r}_i}{\partial q_j} &= \frac{d}{dt} \bigg( \sum_{i=1}^{N} m_i \dot{\mathbf{r}}_i \cdot \frac{\partial \mathbf{r}_i}{\partial q_j} \bigg) - \sum_{i=1}^{N} m_i \dot{\mathbf{r}}_i \frac{d}{dt}\bigg( \frac{\partial \mathbf{r}_i}{\partial q_j }\bigg) \end{align*} \] There are two terms that we need to derive further. For the first one, we use the so called cancellation of dots: \[ \begin{align*} \dot{\mathbf{r}}_i &= \sum_{j=1}^{n}\frac{\partial \mathbf{r}_i}{\partial q_j} \dot{q}_j + \frac{\partial \mathbf{r}_i}{\partial t} ~~~~~~~~~ \frac{\partial \dot{\mathbf{r}}_i}{\partial \dot{q}_j} = \frac{\partial \mathbf{r}_i}{\partial q_j} ~~~~~~~~ \text{Cancellation of Dots}\\ \sum_{i=1}^{N} m_i\dot{\mathbf{r}}_i \cdot \frac{\partial \mathbf{r}_i}{\partial q_j} &= \sum_{i=1}^{N} m_i\dot{\mathbf{r}}_i \cdot \frac{\partial \dot{\mathbf{r}}_i}{\partial \dot{q}_j} = \frac{\partial }{\partial \dot{q}_j} \bigg( \frac{1}{2}\sum_{i=1}^{N} m_i( \dot{\mathbf{r}}_i\cdot \dot{\mathbf{r}}_i) \bigg) = \frac{\partial T}{\partial\dot{q}_j} \end{align*} \] where \(T\) is the total kinetic energy of the system. For the second term, we have: \[ \begin{align*} \frac{d}{dt}\bigg( \frac{\partial \mathbf{r}_i}{\partial q_j } \bigg) &= \sum_{k=1}^{n} \frac{\partial }{\partial q_k} \bigg( \frac{\partial \mathbf{r}_i}{\partial q_j} \bigg) \dot{q}_k + \frac{\partial }{\partial t}\bigg( \frac{\partial \mathbf{r}_i}{\partial q_j} \bigg) \\ \dot{\mathbf{r}}_i &= \sum_{k=1}^{n}\frac{\partial \mathbf{r}_i}{\partial q_k} \dot{q}_k + \frac{\partial \mathbf{r}_i}{\partial t} ~~~~~~~~~~ \frac{\partial \dot{\mathbf{r}}_i}{\partial q_j} = \sum_{k=1}^{n}\frac{\partial }{\partial q_j}\bigg( \frac{\partial \mathbf{r}_i}{\partial q_k}\bigg) \dot{q}_k + \frac{\partial}{\partial q_j}\frac{\partial \mathbf{r}_i}{\partial t} \\ & \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{d}{dt}\bigg( \frac{\partial \mathbf{r}_i}{\partial q_j } \bigg) = \frac{\partial \dot{\mathbf{r}}_i}{\partial q_j} \end{align*} \] where we have used the Schwarz’s theorem to change the order of partial derivatives. Hence, we have: \[ \begin{align*} \sum_{i=1}^{N} m_i \dot{\mathbf{r}}_i \cdot \frac{d}{dt}\bigg( \frac{\partial \mathbf{r}_i}{\partial q_j }\bigg) = \sum_{i=1}^{N} m_i \dot{\mathbf{r}}_i \cdot \frac{\partial \dot{\mathbf{r}}_i}{\partial q_j} = \frac{\partial }{\partial q_j} \bigg( \frac{1}{2}\sum_{i=1}^{N} m_i( \dot{\mathbf{r}}_i\cdot \dot{\mathbf{r}}_i) \bigg) = \frac{\partial T}{\partial q_j} \end{align*} \] Finally, we have the Euler-Lagrange Equation: \[ \sum_{i=1}^{N} m_i \ddot{\mathbf{r}}_i \cdot \frac{\partial \mathbf{r}_i}{\partial q_j} = \frac{d}{dt} \bigg( \sum_{i=1}^{N} m_i \dot{\mathbf{r}}_i \cdot \frac{\partial \mathbf{r}_i}{\partial q_j} \bigg) - \sum_{i=1}^{N} m_i \dot{\mathbf{r}}_i \cdot \frac{d}{dt}\bigg( \frac{\partial \mathbf{r}_i}{\partial q_j }\bigg) = \frac{d}{dt}\bigg( \frac{\partial T }{\partial \dot{q_j}}\bigg) - \frac{\partial T}{\partial q_j} \] \[ \sum_{j=1}^{n} \bigg( \frac{d}{dt}\bigg( \frac{\partial T }{\partial \dot{q_j}}\bigg) - \frac{\partial T}{\partial q_j} \bigg) \delta q_j = \sum_{j=1}^{n} \bigg( \Xi_j - \frac{\partial V}{\partial q_j} \bigg) \delta q_j \]



References

[1]
C. Lanczos, The variational principles of mechanics. Courier Corporation, 2012, p. 88.